2,5-DISELENA-3,3,4,4-TETRAFLUOROHEXANE AND 2,5-DISELENA-1,1,1,6,6,6-HEXAFLUOROHEXANE AND THEIR PLATINUM AND PALLADIUM CHLORIDE COMPLEXES

KULDIP K. BHASIN, RONALD J. CROSS, DAVID S. RYCROFT, and DAVID W.A. SHARP

Department of Chemistry, University of Glasgow, Glasgow Gl2 8QQ (Scotland)

SUMMARY

The diselencethers, $CH_3SeCF_2CF_2SeCH_3$ and $CF_3SeCH_2CH_2$ SeCF₃ are described. 1:1 Complexes are formed between these ligands and platinum(II) and palladium(II) chloride.

INTRODUCTION

Diselencethers containing fluorine do not appear to have been described in the literature although many nonfluorine-containing analogues are known [1] together with the formation of their complexes through chelation by the selenium atoms [2]. We now report the preparation of two 2,5-diselenahexanes, $CH_3SeCF_2CF_2SeCH_3$ and $CF_3SeCH_2CH_2SeCF_3$, together with the formation of platinum and palladium chloride complexes. Corresponding dithioethers are known [3,4,5] together with many complexes including platinum derivatives of many of the fluorinated species [6].

RESULTS AND DISCUSSION

2,5-Diselena-3,3,4,4-tetrafluorohexane, $CH_3SeCF_2CF_2$ -SeCH₃ (A), is prepared from sodium methaneselenol, NaSeCH₃, and 1,2-dibromotetrafluoroethane. 2,5-Diselena-1,1,1,- 6,6,6-hexafluorohexane, $CF_3SeCH_2CH_2SeCF_3$ (B), is prepared from bis(trifluoromethyl)diselenide, $CF_3SeSeCF_3$, and ethene under u.v. irradiation. The diselencethers react with solutions of platinum(II) and palladium(II) chloride species to give 1:1 complexes LMCl₂ (L = A or B). The ease of formation of palladium complexes is noteworthy as the dithic analogue of (B) forms only platinum complexes whilst no metal complexes have yet been isolated with the thic analogue of (A) [6]. This suggests considerably greater complexing ability of selenium in these fluorinated species as compared to sulphur.

The spectroscopic properties of the present complexes strongly suggest the presence of molecular species with square planar co-ordination about the metals. The $^{19}{\rm F}$ n.m.r. spectrum of $[({\rm CF}_3{\rm SeCH}_2{\rm CH}_2{\rm SeCF}_3){\rm PtCl}_2]$ shows the presence of the two syn- and anti-isomers expected for such a geometry with each selenium having a lone pair and a trifluoromethyl substituent. The $^{19}{\rm F}$ n.m.r. spectrum of the palladium chloride complex is very broad (400 Hz) at -21 p.p.m. It does not vary with temperature.

The ¹H n.m.r. spectra of $[(CH_3SeCF_2CF_2SeCH_3)MCl_2]$ (M = Pt and Pd) also show the presence of two isomers. The ¹⁹F n.m.r. spectra of these complexes are complex and consist of two AA'BB' spectra (with ¹⁹⁵Pt satellites in the case of the platinum complex) arising because of slow inversion at selenium and fast ring inversion on the n.m.r. time scale (compare the spectrum of the methylene protons in $[(PrSeCH_2CH_2SePr)PdCl_2][7]$). The spectrum could be simulated [8] with the parameters in the Table and the isomer ratios are approximately 60:40. The absolute signs of the coupling are based on the ²J_{FF} values being positive; the analysis does not give the assignment of J_{AA}, and J_{BB}.

From the relative values of the shifts and coupling constants of the platinum and palladium species it is probable that the more abundant isomer for each metal has the same configuration. It has not proved possible to identify these isomers.

172

The infrared spectra of the complexes are virtually identical to those of the free ligands except that two extra bands assigned to metal-chlorine stretching modes [9] are seen near to 300 cm^{-1} .

EXPERIMENTAL

Synthesis of 2,5-diselena-3,3,4,4-tetrafluorohexane, CH₃SeCF₂CF₂SeCH₃, and its complexes

Dimethyldiselenide [10] (18.8 g, 0.1 mole) was converted to NaSeCH₃ in liquid ammonia at -78^oC and 1,2-dibromotetrafluoroethane (26.2 g, 0.1 mole) was added dropwise over The mixture was stirred for 72 hours, a period of 1 hour. ammonia allowed to evaporate, the mixture treated with water and extracted with chloroform. After distillation under reduced pressure 2,5-diselena-3,3,4,4-tetrafluorohexane was obtained as a vile-smelling pale yellow oil, b.p. 31^OC at 0.01 mm: (yield 20.3 g, 70%). Found: C, 16.6; H, 2.2; F, 26.0; C₄H₆F₄Se₂ requires C, 16.7; H, 2.1; F, 26.4%. Mass spectral data (m/e (relative intensity) assignment) 290 (100) M; 275 (15) M-CH₃; 190 (50) CH₃SeSeCH₃; 175 (70) CH₃Se₂; 145 (50) CH₃SeCF₂; 126 (15) CH₃SeCF; 100 (15) CF₂CF₂; 95 (70) CH₂Se. Infrared data: 3030w, 2950w, 2840w, 1425m, 1321w, 1280s, 1260m, 1210s, 1105s(sh), 1085vs, 1000s, 918s, 810s, 870s, 790m(br), 750vs, 580m(br). (s strong, m medium, w weak, sh shoulder, br broad). The ¹H n.m.r. spectrum shows a singlet at +2.33 p.p.m. and the ¹⁹F n.m.r. spectrum a singlet at -99.7 p.p.m.

2,5-diselena-3,3,4,4-tetrafluorohexane reacts with an aqueous ethanolic solution of K_2PtCl_4 to form a 1:1 orangeyellow PtCl₂ complex recrystallised from ethanol. Found: C, 8.4; H, 1.0; Cl, 12.6; F, 13.6. $C_4H_6Cl_2F_4PtSe_2$ requires C, 8.6; H, 1.1; Cl, 12.8; F, 13.7%.

The diselencether reacts with an aqueous acetone solution of K_2PdCl_4 to form a brick-red 1:1 PdCl₂ complex. Found: C, 10.2; H, 1.2; Cl, 15.2; F, 16.2. $C_4H_6Cl_2F_4PdSe_2$ requires C, 10.3; H, 1.3; Cl, 15.2; F, 16.3%.

Synthesis of 2,5-diselena-1,1,1,6,6,6-hexafluorohexane, CF₂SeCH₂CH₂SeCF₃ and its complexes

Bis(trifluoromethyl)diselenide [11]) (0.296 g, 1 mmole) and ethene (0.042 g, 1.5 mmole) were condensed into a reaction flask so that at room temperature the total pressure of the reactants was ca. 1 atm. The flask was irradiated for 30 hours (Hanovia medium pressure mercury lamp) and the contents were then fractionated and characterised by standard vacuum line techniques. The fraction left after removal of unreacted CF₃SeSeCF₃ and ethene was 2,5-diselena-1,1,1,6,6,6hexafluorohexane (0.194 g, 80%). B.p. 75 - 76^OC at atmospheric pressure. Found: C, 14.7; H, 1.4; F, 35.1. C₄H₄F₆Se₂ requires C, 14.8; H, 1.2; F, 35.2%. Mass spectral data 326 (100) M; 298 (20) CF_SeSeCF_; 280 (10) CF_SeSeCF_; 257 (70) CF₃SeCH₂CH₂Se; 229 (15) CF₃Se₂; 161 (65) CF₃Se. Infrared data: 2960w, 2950w, 2860w, 1520w, 1425s, 1280s, 1250s, 1190vs, 900sh, 800m(sh), 740vs, 710m, 580s, 530m. The ¹H n.m.r. spectrum of the diselencether shows a singlet at +3.36 p.p.m. (w.r.t Me_Si), the ¹⁹F n.m.r. spectrum shows a singlet at -37.98 p.p.m. (w.r.t. CCl₂F).

The 2,5-diselena-1,1,1,6,6,6-hexafluorohexane reacts in aqueous-acetone solution with K_2PtCl_4 to give an orangeyellow 1:1 adduct on cooling (80% yield). Found: C, 7.9; H, 0.8; Cl, 11.9; F, 19.1. $C_4H_4Cl_2F_6PtSe_2$ requires C, 8.1; H, 0.7; Cl, 12.0; F, 19.3%. The ¹H n.m.r. spectrum of the complex in CDCl₃ shows a broad resonance at +4.2 p.p.m. which changes to a very complex spectrum on cooling. The ¹⁹F n.m.r. spectrum shows two isomers

		Shift	³ J <u>Pt</u> -Se-C- <u>F</u>	Ratic
Isomer	А	-38.43	55.4	21
Isomer	в	-39.82	53.9	79

The brick red 1:1 2,5-diselena-1,1,1,6,6,6-hexafluorohexane palladium(II) chloride complex was prepared similarly. Found: C, 9.4; H, 0.7; Cl, 14.0; F, 22.7. $C_4H_4Cl_2F_6PdSe_2$ requires C, 9.6; H, 0.8; Cl, 14.1; F, 22.7%.

TABLE 1

¹⁹F n.m.r. data for $\lfloor (CH_3SeCF_5CF_5SeCH_3)MCl_5 \rfloor$ (M = Pt, Pd)

TT - TT -	T. Mara TOT		ur 2 ^{Lr} 2 ^{Del}	-п ₃ /мст ₂]	14 = W)	(D4 ')			
Isomer	Compound	ÅÅ	о ^р в	2 _J AB	3 _{JAA} ,	³ J _{BB}	з _Ј дв,	3J _{Pt-A}	3 _J Pt-B
Major	P t P d	-102.4 - 98.1	-94.5 -90.4	+221.0 +220.9	-14.9 -14.1	-17.2 -18.2	- 9.8 - 10.9	+74	<u>+</u> 112
Minor	Pt Pd	-100.8 - 96.0	-97.5 -93.3	+217.5 +217.0	- 9.1 -10.5	-11.1 -12.6	-15.9 -16.0	<u>+</u> 128	20 +1

Chemical shifts are in p.p.m., positive to low field of external CFCl₃; coupling constants are in Hz.

We thank the Science Research Council for financial support, the Commonwealth Scholarship Commission in the United Kingdom for the award of a scholarship and the Punjab University, Chandigarh (India) for leave of absence (to KKB).

REFERENCES

- 1 'Organoselenium Compounds: their Chemistry and Biology', D.L. Klayman and W.H.H. Günther, Editors, Wiley, New York, London, Sydney, Toronto, 1973.
- 2 e.g. N.N. Greenwood and G. Hunter, J. Chem. Soc. (A), (1967) 1520; (1969), 929; H.J. Whitfield, J. Chem. Soc. (A), (1970) 113.
- J.F. Harris jun., J. Amer. Chem. Soc., <u>84</u> (1962) 3148;
 J. Org. Chem., <u>32</u> (1967) 2063; J.F. Harris jun. and F.W. Stacey, J. Amer. Chem. Soc., <u>83</u> (1961) 840.
- 4 G. Haran and D.W.A. Sharp, J. Chem. Soc. Perkin I, (1972) 34.
- 5 R.N. Haszeldine, R.B. Rigby, and A.E. Tipping, J. Chem. Soc. Perkin I, (1972) 2438.
- 6 R.J. Cross, L. Manojlović-Muir, K.W. Muir, D.S. Rycroft, D.W.A. Sharp, T. Solomun, and H. Torrens M., J. Chem. Soc. Chem. Comm., (1976) 291; H. Torrens M., PhD thesis, University of Glasgow.
- 7 G. Hunter and R.C. Massey, J. Chem. Soc. Dalton, (1976) 2007.
- 8 Using the SIMEQ II programme of C.W.F. Kort and M.J.A. de Bie. The four spin systems (two AA'BB' and two AA'BB'X) could not be calculated simultaneously as the programme can store only three sets of parameters; however, different combinations of three sub-spectra were sufficient to deal with all overlap.
- 9 D.M. Adams, J. Chatt, J. Gerratt, and A.D. Westland, J. Chem. Soc., (1964) 734; S. Mizugshima, I. Ichishima, I. Nakagawa, and J.V. Quagliano, J. Phys. Chem., <u>59</u> (1955) 293.
- 10 M.L. Bird and F. Challenger, J. Chem. Soc., (1942) 570.
- 11 J.W. Dale, H.J. Emeleus, and R.N. Haszeldine, J. Chem. Soc., (1958) 2939.